


Boost up Your Certification Score

# Palo Alto Networks

## SecOps-Generalist

### Palo Alto Networks Security Operations Generalist



**For More Information – Visit link below:**

**<https://www.examsboost.com/>**

#### Product Version

- ✓ Up to Date products, reliable and verified.
- ✓ Questions and Answers in PDF Format.

# Latest Version: 6.0

## Question: 1

How does Cortex XSIAM enhance proactive security operations?

Response:

- A. By enabling AI-powered threat hunting and anomaly detection
- B. By automatically blocking all external network traffic
- C. By eliminating the need for EDR solutions
- D. By focusing only on known attack signatures

**Answer: A**

## Question: 2

A large enterprise is migrating some internal applications to a cloud-based Software-as-a-Service (SaaS) model and implementing a SASE architecture leveraging Palo Alto Networks Prisma Access. They are encountering issues with the correct identification and enforcement of policies for a specific custom internal web application that now runs on a standard HTTPS port (443) alongside other legitimate SaaS traffic. The security team needs to ensure this custom application is identified separately from general 'web-browsing' and enforce specific QOS and security profiles on it.

- A. Create a custom application signature using App-ID based on unique characteristics of the application's payload or behavior, then create a security policy rule matching this custom App-ID.
- B. Modify the default 'web-browsing' application signature to exclude traffic destined for the specific IP address/FQDN of the custom application.
- C. Rely on Content-ID to identify the specific application content and apply policies based on content signatures instead of App-ID.
- D. Configure a URL Filtering profile to block access to the custom application's URL, then allow it in a separate rule with the desired profiles.
- E. Deploy a separate, dedicated Strata NGFW appliance specifically for this custom application traffic before it reaches Prisma Access.

**Answer: A**

Explanation:

Identifying custom or less common applications running on standard ports is a key use case for App-ID's custom application signature capabilities. Option A correctly describes the process: create a custom App-ID signature that looks for unique attributes of the application traffic (like specific HTTP headers, URL patterns, or payload content that identifies it as the custom app), and then use this custom App-ID in security policies to apply granular control and inspection. Option B is incorrect because modifying default signatures is not possible or recommended. Option C is incorrect; Content-ID focuses on threats

and sensitive data within applications, not the identification of the application itself. App-ID is required for application identification and policy enforcement. Option D is a workaround using URL filtering but doesn't provide true application-level identification and control based on App-ID. Option E is impractical and defeats the purpose of a unified SASE architecture like Prisma Access.

### Question: 3

A global company is implementing granular control over SaaS application usage using Palo Alto Networks Strata NGFWs at branch offices and Prisma Access for remote users. They have configured decryption policies to inspect SSL/TLS traffic for sanctioned SaaS applications like Office 365 and Salesforce. However, users accessing unsanctioned shadow IT applications via encrypted channels are still successfully bypassing security controls. Additionally, some legitimate applications are experiencing functionality issues after decryption is enabled. What are potential reasons for these issues and necessary steps to address them?

- A. Decryption is not properly configured for all relevant traffic zones, causing some encrypted traffic to pass through uninspected.
- B. The applications identified by App-ID are not all being processed by the decryption policy before reaching security profiles.
- C. The firewall/Prisma Access might be encountering SSL/TLS protocol versions or cipher suites that are not supported for decryption, leading to decryption failures and fallback to non-decrypted paths (potentially allowing unsanctioned apps).
- D. Application functionality issues may arise if the application uses client-side certificates, pinned certificates, or relies on specific SSL/TLS negotiation steps that are disrupted by the decryption proxy.
- E. The security policy rules using App-ID are ordered incorrectly, allowing 'allow' rules for 'any' application to match encrypted traffic before the decryption policy is evaluated.

### Answer: A,C,D

#### Explanation:

This scenario highlights common challenges with decrypting encrypted traffic for application layer inspection. Option A is correct because decryption policies must apply to the correct zones and traffic flows; misconfiguration can cause traffic to bypass decryption. Option B is incorrect; App-ID identifies the application regardless of whether it's decrypted or not, although granular enforcement after identification often requires decryption for full Content-ID, Threat Prevention, etc. Option C is correct; the firewall/Prisma Access has limitations on supported SSL/TLS versions, cipher suites, and key exchange methods. If an application uses unsupported parameters, decryption will fail, and depending on the decryption profile's action for 'decryption errors', the session might be allowed without inspection. Option D is correct; applications using mechanisms like certificate pinning or client authentication can break when a decryption proxy intercepts and re-signs the certificate. Exclusions for such applications are often necessary. Option E is incorrect; Security policy rule evaluation happens after App-ID identification and typically after decryption policy evaluation (if decryption is enabled for the matched rule's traffic). Rule order primarily affects which policy is applied to the identified application, not whether decryption happens or fails beforehand.

### Question: 4

A security analyst is investigating an alert triggered by WildFire on a Strata NGFW. The alert indicates malicious activity within an application identified as 'file-transfer' via F TP. The log entry shows the following details:

Threat/Content Type: wildfire  
Category: malware  
Application: file-transfer  
Virtual System: vsys1  
Source Zone: Internal  
Destination Zone: External  
Source IP: 192.168.10.50  
Destination IP: 203.0.113.10  
Protocol: tcp  
Source Port: 54321  
Destination Port: 21  
Action: block  
Repeat Count: 1  
... (additional log fields)

Based on Palo Alto Networks App-ID and security features, what does this log entry signify regarding application layer inspection and threat prevention?

- A. The NGFW identified the traffic as the 'file-transfer' application (specifically FTP on port 21), and WildFire subsequently identified malicious content within that file transfer, leading to the session being blocked.
- B. The traffic was initially identified as generic 'web-browsing' on port 21, and WildFire identified it as malware, causing App-ID to re-classify it as 'file-transfer'.
- C. The threat was detected by the Intrusion Prevention System (IPS) within the Threat Prevention profile assigned to the policy allowing 'file-transfer', and the alert was forwarded to WildFire for confirmation.
- D. The NGFW blocked the traffic based solely on the protocol (FTP on port 21 ) being deemed high-risk, without needing deep application or content inspection.
- E. The log indicates a policy misconfiguration where a file transfer application was allowed to communicate with an external malware distribution point detected by the URL Filtering profile.

**Answer: A**

Explanation:

This log entry is a classic example of Palo Alto Networks' integrated application identification and threat prevention. Option A correctly interprets the log: App-ID identified the traffic flow as 'file-transfer' (specifically FTP, which commonly uses port 21 as seen in the destination port). Once the application was identified, the relevant security profiles (including WildFire analysis) were applied to the content traversing the application session. WildFire then detected malware within the file being transferred, triggering the 'block' action specified in the security policy. Option B is incorrect; App-ID identifies the application based on various techniques including protocol decoding, signature matching, and heuristics, independent of WildFire's analysis. WildFire confirms malware within an identified application. Option C

is incorrect; while IPS is part of Threat Prevention, the log explicitly states the 'Threat/Content Type' is 'wildfire' and 'Category' is 'malware', indicating detection by the WildFire engine, not necessarily IPS signatures. Option D is incorrect; Palo Alto Networks NGFWs operate on application-level control. Simply blocking a protocol like FTP on its default port is possible but less granular than identifying the application and inspecting its content for threats, as demonstrated here. Option E is plausible for some scenarios but doesn't directly explain the log entry's specific details showing WildFire detecting malware within the file transfer itself, leading to the block.

## Question: 5

In a Palo Alto Networks Strata NGFW or Prisma Access environment, traffic is processed through either the 'slow path' or the 'fast path'. Which of the following conditions or processing stages most accurately describes an action or requirement that forces the initial packet of a new session into the slow path?

- A. The packet requires basic routing lookups and interface forwarding.
- B. The packet is the first packet of a flow and requires App-ID identification and security policy lookup to build a session.
- C. The packet is part of an established TCP session that has already been identified and allowed.
- D. The packet is being forwarded based on an existing hardware-accelerated session lookup.
- E. The packet is dropped due to a security policy deny rule after inspection.

## Answer: B

Explanation:

The slow path (also known as the session setup path or control plane/management plane involvement for specific tasks) is primarily where the first packet of a new session is processed. This initial processing is required to perform several critical functions: 1. Session Creation: A stateful session entry must be built. 2. App-ID Identification: The application needs to be identified, which may require inspecting packet headers and even initial payload data. 3. Security Policy Lookup: The identified application, source/destination zones, users, etc., are used to find the matching security policy rule. 4. NAT/Routing Decisions: Final routing and NAT decisions are confirmed based on the policy. 5. Security Profile Assignment: Relevant security profiles (Threat, Antivirus, Antispyware, Vulnerability Protection, URL Filtering, WildFire) are identified and associated with the session for subsequent inspection. Once the session is created and the policy is matched, subsequent packets for that session are typically offloaded to the fast path (data plane) for high-performance processing, unless they trigger specific slow path requirements like decryption, file inspection, or encountering certain threat types requiring deeper analysis. Option A describes a basic network function that might or might not require deep slow path processing depending on context, but is not the primary defining characteristic forcing the first packet into the slow path compared to App-ID/policy lookup. Options C and D describe characteristics of traffic processed by the fast path (established sessions, hardware lookup). Option E describes an outcome of policy enforcement after processing, not the mechanism that initially put the first packet on the slow path.

## Question: 6

Differentiate between the packet processing characteristics of the 'slow path' and the 'fast path' in a Palo Alto Networks security platform (Strata/Prisma Access). Select all statements that accurately describe the distinctions.

- A. The slow path is primarily responsible for initial session creation and the application of App-ID and policy lookup, utilizing the device's general-purpose CPU(s).
- B. The fast path handles the vast majority of traffic volume for established sessions, relying on hardware acceleration (ASICs or FPGAs) for high throughput.
- C. Deep packet inspection for security profiles like Threat Prevention, WildFire submission, and Decryption are exclusively performed in the fast path due to performance requirements.
- D. Packets entering the fast path undergo a full security policy re-evaluation and App-ID re-identification on every packet to ensure dynamic policy enforcement.
- E. If a session on the fast path encounters a specific condition requiring deeper analysis (e.g., a file upload triggering WildFire analysis or encountering a complex attack signature), subsequent packets for that session or the relevant data stream might be temporarily diverted back to the slow path or a dedicated inspection engine before potentially returning to the fast path.

**Answer: A,B,E**

Explanation:

Understanding the division of labor between the slow path and fast path is crucial for performance troubleshooting and comprehending how the firewall processes traffic. - Option A (Correct): The slow path (CPU path) is indeed where the initial work of session setup occurs, including identifying the application (App-ID), finding the matching security policy rule, determining security profile assignments, and building the session table entry. - Option B (Correct): The fast path (data plane, leveraging ASICs/hardware acceleration) is optimized for forwarding subsequent packets of established sessions at high speed by performing a quick session table lookup. This offloads the bulk of traffic processing from the CPU. - Option C (Incorrect): While performance optimized, many deep inspection tasks like decryption, full file analysis for WildFire, complex signature matching, and applying specific Data Filtering profiles often involve the slow path CPU or dedicated content inspection engines which are conceptually part of the deeper processing flow, distinct from the simple fast path session lookup and forwarding. The fast path directs the traffic to these engines based on the session setup in the slow path, but the intensive inspection itself isn't purely ASIC- based forwarding. - Option D (Incorrect): The fast path relies on the session state and policy decision made by the slow path during the first packet processing. Packets on the fast path do not undergo a full policy re-evaluation or App-ID re-identification. They are simply forwarded based on the established session parameters. App-ID is a single-pass inspection and re-classification happens dynamically, but the fast path's role is forwarding based on the current session state. - Option E (Correct): This describes a dynamic switching behavior. Even if a session is primarily on the fast path, specific events (like the start of a file transfer, detecting a pattern requiring deeper analysis, or triggering a vulnerability signature) can cause the relevant packets or streams within that session to be diverted to the slow path CPU or specialized inspection engines for thorough examination before allowing the session to continue on the fast path (if deemed safe) or blocking it.

**Question: 7**

A network administrator notices high CPU utilization and lower than expected throughput on a Palo Alto Networks NGFW during peak hours, despite the total bandwidth usage being well within the hardware capabilities. Reviewing system metrics shows a significant number of new sessions being established per second compared to the overall Mbps throughput. Which configuration or traffic pattern is MOST likely contributing to excessive slow path processing and causing the performance bottleneck?

- A. A large volume of long-lived, established HTTP sessions with basic Threat Prevention profiles enabled.
- B. Extensive use of Security policies with source/destination NAT configured, primarily for outbound internet traffic.
- C. A sudden surge in traffic consisting of many short-lived connections to unique destination IPs/ports, potentially using varied applications or protocols.
- D. Heavy traffic consisting mainly of UDP-based video streaming using an established, identified App-ID.
- E. Security policies allowing inter-zone traffic with no security profiles applied.

### Answer: C

#### Explanation:

High CPU utilization coupled with a high rate of new sessions per second, despite relatively low overall bandwidth, is a strong indicator that the firewall is spending a disproportionate amount of time processing the first packet of many sessions, which occurs on the slow path. The slow path is CPU-intensive because it involves App-ID lookup, policy matching, session creation, NAT/routing decisions, and security profile assignment. - Option A: Long-lived, established sessions are primarily handled by the fast path after the initial setup. While security profiles add some overhead, the core processing of established flow is hardware-accelerated, not CPU bound for simple forwarding. - Option B: While NAT involves slow path processing for the first packet (or connections requiring dynamic NAT allocation), established sessions with NAT are handled efficiently by the fast path using the created session state. - Option C (Correct): A large volume of short-lived connections, especially if they vary widely in destination and application, means the firewall must process the first packet of each connection individually on the slow path. This puts a heavy load on the CPU for session setup, even if the data transferred within each session is small. This is a classic scenario causing high 'sessions per second' and thus high slow-path CPU load. - Option D: Established UDP sessions, once identified by App-ID and allowed by policy, are also typically handled efficiently by the fast path (or hardware session acceleration), similar to TCP established sessions. - Option E: Policies allowing traffic with no security profiles still require App-ID identification and policy lookup for the first packet, putting it on the slow path for session creation. However, this processing is generally less intensive than processing requiring deep inspection, and the bottleneck described points to the volume of new sessions overwhelming the CPU's ability to perform the initial setup, which is exacerbated by complex policies or varied traffic, but fundamentally driven by the 'new session' rate.

### Question: 8

A financial institution is implementing a Palo Alto Networks Strata NGFW to secure its internal network and prevent data exfiltration and malware infections over encrypted channels. They need to inspect all outbound HTTPS traffic from employee workstations to detect sensitive data leaving the network and block access to malicious websites identified via URL filtering and Threat Prevention, even if accessed over SSL/TLS. Which decryption method is required for this use case, and what is its fundamental principle of operation?

- A. SSL Forward Proxy decryption, which intercepts the SSL/TLS handshake, presents the client with a certificate signed by the firewall's root CA, and establishes separate encrypted sessions with the client and the server.
- B. SSL Inbound Inspection, which requires installing the server's private key on the firewall to decrypt incoming encrypted connections to internal servers.
- C. SSL Inbound Inspection with a wildcard certificate, which allows the firewall to decrypt any incoming encrypted connection without needing individual server private keys.
- D. SSL Protocol Downgrade, which forces the client and server to use an unencrypted version of the protocol (e.g., HTTP instead of HTTPS).
- E. Proxy Automatic Configuration (PAC) file decryption, which redirects encrypted traffic to a transparent proxy for inspection before sending it to the destination.

**Answer: A**

Explanation:

The scenario describes the need to inspect outbound encrypted traffic from internal clients (workstations) to external destinations (malicious websites, cloud services for data exfiltration). This is the primary use case for SSL Forward Proxy decryption. Option A correctly describes the process: the firewall acts as a 'man-in-the-middle' by intercepting the connection attempt, generating a certificate for the requested website on the fly (signed by a root CA trusted by the clients), establishing an encrypted session with the client, and a separate encrypted session with the actual server. This allows the firewall to see and inspect the unencrypted traffic between these two sessions. Option B describes SSL Inbound Inspection, used for securing traffic to internal servers. Option C is incorrect as wildcard certificates are used for inbound inspection, not outbound forward proxy. Option D is not a standard, secure, or effective decryption method employed by modern firewalls for this purpose; it would break legitimate traffic and is insecure. Option E describes a method for directing traffic, but not the mechanism for performing the SSL/TLS decryption itself, which still relies on a proxy or firewall capability like SSL Forward Proxy.

## Question: 9

A large organization is deploying SSL Forward Proxy decryption across its SASE infrastructure (Palo Alto Networks Prisma Access) for global users accessing the internet. After initial rollout, they encounter several challenges, including users reporting certificate errors on specific websites and internal applications, and some applications failing to function correctly when decryption is enabled. Which of the following are common reasons for these issues and crucial considerations when implementing SSL Forward Proxy?

- A. The firewall's Forward Trust Certificate (the root CA used to re-sign certificates) has not been deployed and trusted by all client devices' operating systems or browser trust stores.
- B. Some applications utilize security mechanisms like certificate pinning, where the client application is hardcoded to trust only the original server certificate, causing it to reject the certificate re-signed by the firewall.
- C. The decryption policy is configured to decrypt traffic to categories or specific URLs that use client-side certificates for authentication, which the firewall's proxy function cannot handle transparently.

- D. The firewall is configured to block sessions that encounter decryption errors (e.g., unsupported cipher suites, protocol errors), rather than bypassing decryption for such sessions.
- E. The Decryption policy is placed after security policies that allow encrypted traffic, preventing the decryption engine from processing the traffic before it's allowed to pass.

**Answer: A,B,C,D**

Explanation:

SSL Forward Proxy decryption introduces a 'man-in-the-middle' which requires careful consideration of various factors:

- Option A (Correct): Clients must trust the firewall's root CA (Forward Trust Certificate) that is used to re-sign certificates. If this certificate isn't deployed or trusted on client devices, users will receive certificate warnings/errors in browsers and applications. This is a fundamental requirement.
- Option B (Correct): Applications employing certificate pinning (e.g., some banking apps, mobile apps) are designed to prevent Man-in-the-Middle attacks by only trusting a specific server certificate. The firewall's re-signed certificate will be seen as untrusted by these applications, causing connection failures. These applications often require exclusion from decryption.
- Option C (Correct): Applications using client-side certificates for authentication (where the client presents a certificate to the server) are typically incompatible with SSL Forward Proxy. The firewall intercepts the flow, but doesn't possess the user's private key to present the client certificate to the server, breaking authentication. Traffic to sites requiring client-side certificates must generally be excluded from decryption.
- Option D (Correct): The Decryption profile action for 'Decryption Errors' is critical. If set to 'Block', any issue encountered during the SSL/TLS negotiation or decryption attempt (like unsupported ciphers, protocol violations, or errors) will result in the session being blocked, causing application failures. Setting it to 'No Decryption' (bypass) for errors allows the session to proceed without inspection but prevents the block.
- Option E (Incorrect): Policy evaluation order is crucial, but the Decryption policy is evaluated independently from the Security policy (or concurrently in modern flows). Decryption is determined based on the Decryption policy rules and Decryption profile before the Security policy applies security inspection after the traffic state (decrypted or not) is known. A policy allowing encrypted traffic before a decryption policy wouldn't prevent decryption; rather, the flow determines if decryption applies based on decryption rules first, then the security policy is applied to the flow (whether decrypted or not). However, placing the decryption exclusion rule after an inclusion rule in the decryption policy could cause issues, but the general order of Security vs. Decryption policy evaluation is not the cause described.

## Question: 10

Consider the following snippet of a Palo Alto Networks Decryption policy rule:

```

rule {
    name "Decrypt Outbound HTTPS"
    from {
        zone "internal-zone";
    }
    to {
        zone "external-zone";
    }
    source {
        any;
    }
    destination {
        any;
    }
    service {
        service-https;
    }
    protocol {
        ssl;
    }
    option {
        ssl-decrypt {
            mode forward-proxy;
            profile "default-decryption-profile";
        }
    }
}

```

What is the primary function of the 'profile "default-decryption-profile"' within this Decryption policy rule configuration?

- A. It defines which certificate (Forward Trust or Forward Untrust) the firewall will use to re-sign server certificates during the SSL Forward Proxy process.
- B. It specifies actions to take when the firewall encounters issues during the decryption process, such as unsupported versions, cipher suites, or certificate errors.
- C. It determines which Security Profiles (Threat Prevention, URL Filtering, etc.) will be applied to the traffic after it has been successfully decrypted.
- D. It lists specific URLs or URL Categories that should be excluded from decryption based on compliance or privacy requirements.
- E. It dictates the SSL/TLS versions and cipher suites that the firewall will negotiate with both the client and the server during the decryption process.

## Answer: B

### Explanation:

In Palo Alto Networks firewalls, the Decryption Profile (referenced within a Decryption policy rule) is primarily used to configure the behavior of the firewall when it encounters errors or specific conditions during the SSL/TLS decryption process. Key settings within a Decryption Profile include actions for unsupported versions, unsupported cipher suites, decryption errors, and expired/invalid certificates (Block, Bypass, or Reset). While some aspects of certificate handling and supported protocols are indirectly related or influenced by the profile settings and the chosen certificate, the primary function controlled by the profile is defining the action upon encountering a decryption issue. Option A is incorrect; the certificates (Forward Trust/Untrust) are selected at the Virtual System or Panorama level and referenced in the Decryption Policy rule options, not primarily defined within the profile itself. Option C is incorrect; Security Profiles are applied in the Security policy rule, not the Decryption profile or policy. Option D is incorrect; URL categories or specific URLs to exclude from decryption are typically defined directly in Decryption Policy rules (usually before inclusion rules) by matching source/destination criteria or specific URL categories, not within the Decryption Profile itself. Option E is partially correct in that the profile can influence actions based on versions/ciphers, but the profile doesn't dictate the negotiation process itself as its primary role; that's a function of the SSL/TLS engine based on its supported algorithms and the negotiated parameters, with the profile defining the response to negotiation failures or unsupported parameters.

# Thank You for Trying Our Product

For More Information – **Visit link below:**

**<https://www.examsboost.com/>**

15 USD Discount Coupon Code:

**G74JA8UF**

## FEATURES

- ✓ **90 Days Free Updates**
- ✓ **Money Back Pass Guarantee**
- ✓ **Instant Download or Email Attachment**
- ✓ **24/7 Live Chat Support**
- ✓ **PDF file could be used at any Platform**
- ✓ **50,000 Happy Customer**

