Boost up Your Certification Score

Cloudera
CDP-3002

CDP Data Engineer- Certification Exam

C

E}_-:_un';s Boost

For More Information = Visit link below:
https://www.examsboost.com/

Product Version

v Up to Date products, reliable and verified.
v" Questions and Answers in PDF Format.



https://www.examsboost.com/�

Latest Version: 7.4

A Data Engineer identifies severe performance degradation due to high shuffle I/0 caused by too many
small shuffle partitions (default 200) in a Spark application running on a CDE Virtual Cluster. To optimize
the job, they must set the number of shuffle partitions to 100.

Which option correctly demonstrates how this performance configuration should be applied to the job?

A. Update the Virtual Cluster configuration using cde-utils.sh add-spark-config-in-virtual-cluster -c
'spark.sql.shuffle.partitions=100', then rerun the existing job definition.

B. Set spark.app.id=100 in the application code, ensuring the driver manages partition count implicitly.
C. Execute the job using cde job run —name my_job —conf spark.driver.cores=100, overriding the
setting specifically for this run.

D. Modify the Spark driver configuration to include —conf spark.default.parallelism=100 during job
creation.

E. Dynamically adjust the cluster's memory fraction by setting spark.memory.storageFraction=0.9 during
job submission to force fewer partitions.

Answer: A

Explanation:

To resolve performance issues caused by an inefficient number of shuffle partitions, the property
'spark.sql.shuffe.partitions' must be tuned. In CDE, configuring this value at the Virtual Cluster level
using 'cde-utils.sh add-spark-config-in-virtual-cluster' applies the configuration to all jobs running on
that cluster. This is suitable if all jobs require this tuning. Alternatively, it can be applied per job using the
'—conf flag with 'cde spark submit' or 'cde job run'. Option A provides a mechanism for tuning cluster
operations via the administrative utilities. Option B is incorrect as 'spark.app.id' is not supported in CDE
job configurations. Option C uses the wrong configuration key (cores instead of shuffle partitions).
Option D uses the wrong tuning parameter for shuffle output partitions. Option E relates to memory
storage capacity, not shuffle parallelism.

A data engineer is analyzing the execution flow of a complex Spark DataFrame join operation running on
a Kubernetes-based cluster After the code is submitted, Spark progresses through Logical and Physical
Planning. At which core stage does Spark use a cost model to compare generated execution paths (e.g.,
deciding between a Broadcast Hash Join and a Sort Merge Join) and select the single optimal plan to
distribute as a set of tasks across the Executors?

A. The Unresolved Logical Plan validation against the Catalog

B. The Catalyst Optimizer performing rule-based optimizations, resulting in the Optimized Logical Plan
C. The final Physical Planning session, selecting the best Physical Plan after running against a cost model
D. The Driver converting the Physical Plan into a Directed Acyclic Graph (DAG) for stage definition

Visit usat: https.//www.examsboost.com/test/cdp-3002



E. The Tungsten engine generating optimized Java bytecode for CPU-bound operations

Answer: C

Explanation:

Spark's planning for structured APIs involves two main phases: logical and physical. The initial logical
plan is optimized by the Catalyst Optimizer, resulting in the optimized logical plan. The physical planning
phase takes this optimized logical plan and generates multiple possible physical execution plans based
on cluster details and configuration (like shuffle partitioning or data distribution). These physical plans
are then run against a cost model, and Spark selects the best physical plan (the blueprint for actual
execution) to be sent to the cluster. Choosing a specific join strategy (like Broadcast Hash Join) is part of
this physical planning decision.

A PySpark job requires the installation of the pandas library to run advanced transformations inside the
executor pods on a Cloudera Data Engineering Virtual Clusten The Data Engineer prepares the Python
dependency using the recommended mechanism. Given the Kubernetes environment in CDE, which
configuration accurately sets up the required virtual environment dependency?

A. Creating a files resource containing pandas.zip, and referencing it via —files flag.

B. Defining spark.executor.pyspark.archive=hdfs://path/to/pandas.tar.gz in the job configuration.

C. Creating a python-env resource by uploading a requirements.txt file specifying pandas, and mounting
the resource to the job definition.

D. Building a custom Spark JAR with an embedded Pandas library, and submitting it as a primary job file.
E. Setting the environment variable PYTHONPATH=/usr/lib/pandas in the Kubernetes pod specifications
manually.

Answer: C

Explanation:

In Cloudera Data Engineering (CDE), custom Python dependencies for Spark jobs (like 'pyspark’ features
needing Pandas) are managed using the dedicated 'python-env' resource type. This resource mandates
the upload of a 'requirements.txt' file, which CDE uses to build the necessary Python virtual
environment for the job execution on the pods. Option A uses the generic 'files' resource, which is
intended for application code or supporting files, not managed Python environments. Options B, D, and
E describe deployment methods that are not standard or supported procedures for managing Python
environments in CDE.

A Data Engineer develops a complex ETL pipeline on a Spark DataFrame, df _transformed, involving
multiple wide transformations (joins and aggregations). This single DataFrame is subsequently used
three separate times for downstream analytical tasks (e.g., writing to Iceberg tables, running two
different reports). To achieve optimal performance tuning and prevent redundant computation of the

Visit usat: https.//www.examsboost.com/test/cdp-3002



complex lineage across the cluster, which Spark operation should be applied after creating
df_transformed?

A. Execute df_transformed.collect() to force immediate data transfer to the driver node.
B. Apply df_transformed.cache() to utilize distributed data persistence.

C. Execute df_transformed.repartition(400) to increase downstream parallelism.

D. Use spark.conf.set('spark.lazy.execution’, 'false') to bypass lazy execution.

E. Convert the DataFrame back to an RDD using df_transformed.rdd().

Answer: B

Explanation:

Persistence (caching) is a fundamental optimization technique crucial when a DataFrame/Dataset
resulting from expensive operations is reused multiple times. Calling 'df_transformed.cache()' (or
'persist()') tells Spark to store the computed data partitions in memory (and potentially disk), avoiding
the costly re-execution of the preceding transformations (the lineage) for subsequent reads. This
significantly improves job acceleration. Option A forces computation but moves all data to the single
driver, potentially causing OOM errors and is antithetical to distributed processing. Option C relates to
shuffling/parallelism management but doesn't prevent re-computation. Option D describes a non-
existent/incorrect Spark configuration (Spark execution is inherently lazy until an action is called).

A Data Engineer is planning the migration of legacy spark-submit batch jobs to production workflows
running via the Cloudera Data Engineering CLI (Spark over Kubernetes). Which TWO statements
accurately reflect best practices or operational characteristics for deploying and managing Spark
applications in this CDE environment?

A. The deployment mode for Spark jobs in CDE must be manually specified as —deploy-mode=client,
ensuring the driver runs on the submitting machine.

B. The CDE CLI command cde job run is preferred over cde spark submit for production execution
because it requires the job definition to be permanently defined beforehand, simplifying repeated
execution and scheduling.

C. Custom containerized execution environments are exclusively supported via the custom-runtime-
image resource type, allowing Docker images to run as both Driver and Executor pods.

D. When setting resource limits, CDE defaults the maximum number of executors to the cluster's CPU
core limit divided by the configured —executor-cores setting.

E. Job dependencies, such as application JAR files or external reference configurations, must be
managed using the files resource type, ensuring they are mounted to the standard lapp/mount directory
on the workload pods.

Answer: B,E

Explanation:
Statement B is correct: 'cde job run' requires a pre-created job definition and is generally suited for
production environments where a job is run multiple times, contrasting with 'cde spark submit', which is

Visit usat: https.//www.examsboost.com/test/cdp-3002



better for development testing as it doesn't create permanent definitions. Statement E is correct: The
'files' resource type is used for application code (like JARs or Python files) and external reference
configuration files, which are mounted to the '/app/mount' location on the Spark driver and executor
pods. Statement A is incorrect: Spark jobs in CDE run using Kubernetes, often implicitly in cluster mode,
and requiring '—deploy-mode=client' is usually inappropriate for production Spark jobs. The CDE CLI
abstracts the cluster management details. Statement C is partially correct but too restrictive: While
'custom-runtime-image' supports custom containers, python dependencies can also be managed via
'python-env'. Statement D is incorrect: CDE autoscaling sets the executor range based on CPU cores
configured for the Virtual Cluster to maximize efficiency, but the specific calculation involving hard limits
isn't stated as a guaranteed default, rather the executor range is set to match the CPU core range of the
Virtual Cluster by default.

A Data Engineer is configuring a Spark job in Cloudera Data Engineering (CDE) intended to run on a
Kubernetes Virtual Cluster. The job processes highly variable datasets, and the engineer aims to
minimize costs by only consuming the necessary executor resources. Which pair of configuration flags
must be explicitly defined when submitting this job using the cde spark submit command to guarantee
resource elasticity within defined bounds?

A. —driver-memory and —driver-cores

B. —executor-memory and —executor-cores

C. —min-executors and —max-executors

D. —conf spark.dynamicAllocation.initialExecutors and —conf spark.dynamicAllocation.enabled=true
E. —conf spark.kubernetes.authenticate.driver.serviceAccountName and —conf
spark.kubernetes.namespace

Answer: C

Explanation:

When deploying a Spark job via the CDE CLI using cde spark submit, the minimum and maximum
boundaries for resource allocation are controlled by —min-executors and --max-executors. Explicitly
setting these flags directly dictates the range within which the Spark application can dynamically
allocate executors on the underlying Kubernetes cluster managed by CDE, ensuring the job starts with
sufficient resources (minimum) and respects cluster capacity limits (maximum) for cost efficiency.

A data engineering team observes that Spark jobs deployed on their CDE Virtual Cluster (which manages
Kubernetes resources) efficiently scale up resources when needed, but hold onto idle executors for too
long, delaying scale-down and increasing cloud costs. Which CDE utility command parameter, related to
cluster autoscaling, should the engineer decrease to accelerate the return of resources to the cluster
pool?

A. —unremovable-node-recheck-timeout
B. —scale-down-delay-after-add

Visit usat: https.//www.examsboost.com/test/cdp-3002



C. —scale-down-delay-after-failure
D. —scale-down-unneeded-time
E. —scale-down-delay-after-delete

Answer: D

Explanation:

To speed up the process of scaling down, the user can decrease the value of the —scale-down-
unneeded-time option, which specifies the amount of time before a node qualifies for scale-down. The
default value for this is 10 minutes. By lowering this value, the cluster autoscaler detects idle nodes
(which host released Spark executors) more quickly and proceeds with node removal, aligning with the
goal of maximizing resource utilization and reducing cost. While other options manage different scale-
down delays, —scale-down-unneeded-time directly controls when an idle resource is marked for
deletion.

A performance analysis of a dynamic Spark application on Kubernetes shows that while the application
started with minimal resources, scaling requests eventually hit a ceiling imposed by the Virtual Cluster
(VC) configuration. The current VC configuration has a maximum capacity set to 50 cores. The user
submits a job with the following configuration settings: —executor-cores 4 —min-executors 2 --max-
executors 20. If dynamic allocation attempts to scale beyond 20 executors, what is the controlling factor
that limits the total resources the Spark application can consume?

A. The spark.driver.memory setting, as the driver prevents resource overallocation.

B. The —max-executors 20 flag defined explicitly during job submission.

C. The Virtual Cluster's absolute Auto-Scale Max Capacity setting of 50 cores, regardless of job
configuration.

D. The total number of shuffle partitions defined by spark.sql.shuffe.partitions.

E. The limit defined by the Resource Quota set at the CDP environment level.

Answer: B

Explanation:

The maximum number of executors a specific job is allowed to request, even when utilizing dynamic
allocation, is governed by the max-executors flag passed during the job submission or configured in the
job definition. If this value is set to 20, the Spark application running within the CDE Virtual Cluster (K8s)
will not request more than 20 executors, even if the Virtual Cluster itself has a higher overall resource
ceiling (like the 50 cores mentioned, which could theoretically support 12 executors running 4 cores
each, but the job limit is the immediate constraint, 20 executors 4 cores/executor = 80 cores total
requested, which would still fail if VC max capacity is 50 cores). Assuming the VC capacity is sufficient for
the job's theoretical max, the job-specific —max-executors is the tightest constraint imposed by the user
on the application's runtime scale.

Visit usat: https.//www.examsboost.com/test/cdp-3002



A Cloudera Data Engineer is designing a DAG for high-frequency incremental data ingestion into Iceberg
tables, requiring a check and execution cycle every 5 minutes. The DAG execution logic relies on
templating the data interval boundaries. If the DAG uses Python's datetime and timedelta modules for
scheduling, what is the precise code snippet required to define this high-frequency schedule?

O schedule interval=timedelta(minutes=5)

O schedule interval='/5 '

i) schedule interval=datetime.timedelta(minutes=5)
() schedule interval='5 minutes'

i) schedule_interval=timedelta(hours=8, minutes=5)
A. Option A

B. Option B

C. Option C

D. Option D
E. Option E

Answer: C

Explanation:

Airflow supports defining the schedule interval using either standard cron expressions (as strings) or Python's datetime. timedelta

object. If the goal is to use the Python timedelta object, the correct implementation requires importing the datetime module and using
datetime.timedelta(minutes=5) Or SIMply timedelta(minutes=5) if timedelta is imported directly. Assuming standard imports (e.g., from datetime
import timedelta, as shown in context examples), Option C is the most formally precise code structure, though A is also often valid based on
common imports. However, since Option C explicitly uses datetime.timedelta, which is standard, and we must assume the necessary import is
available, it is the best representation of defining the interval using Python time objects. Option B uses the cron string equivalent, which is also
valid, but the question specifically asks for the code snippet using timedelta. Option A depends on importing only timedelta, while Option C shows
the fully qualified module usage. Given examples commonly import datetime and timedelta, Option C is the most robust presentation if the intent is
to highlight the use of the Python object from the correct module, which is datetime. timedelta.

Question: 10

A developer needs to configure a new CDE Spark job through the CLI to run automatically once a day at midnight UTC. The developer
sets the job schedule using the following parameters: --schedule-enabled=true --cron-expression '@ @ ' --schedule-start 2024-06-
01T14:00:007 Based on Airflow scheduling logic employed by CDE jobs, when will the very first successful job run complete its
execution?

A. Immediately after creation, as 2024-06-01T14T:00:00z has passed midnight.
At 2024-06-01T23:59:59Z, closing the daily interval of June 1st.

At 2024-06-02T00:00:00Z marking the start of the first scheduled interval.

At 2024-06-02T23:59:59Z, closing the daily interval of June 2nd.

At 2024-06-03T00:00:00Z, running for the period of June 2nd.

Answer: E

Visit usat: https.//www.examsboost.com/test/cdp-3002



Explanation:

Scheduled job runs in CDE (which uses cron expressions for scheduling) start at the end of the first full
schedule interval after the specified start date. The schedule interval is 'daily' (o e, which means
midnight). The date is June 1st, 2024, at The - -schedule- start first full schedule interval must elapse
after the start time. Since the schedule runs daily at midnight (00:00), the first run should process the
data for June 1st. If the start date is 14:00 on June 1st, the first full daily interval (which should run at
the boundary of June 2nd, 00:00) is considered missed or not fully elapsed from the 14:00 start point if
not caught up (assuming catchup is disabled or the logic holds). The rule states the job starts at the end
of the first full schedule interval after the start date. If the daily interval is configured to trigger at
midnight (00:00): 1. Start Date: 2. The scheduler checks for the next trigger point, This is the end of the
interval 2024-06-0100:00 to 2024-06-02 00:00. Because the start date 14:00 is within the first interval,
Airflow determines which interval boundary is the first complete one following the effective start time.
Following the specific CDE note: If the start date is 14:00, the first scheduled run is triggered at the end
of the next day, after 23:59:59. The next full day after June 1st is June 2nd. The run corresponding to the
end of June 2nd (which processes June 2nd's data) is triggered at If the had been 00:00, the run would
be triggered at the end of the same day start date (June 1st), after 23:59:59. Since the start date is
14:00, the run is pushed to the next boundary (E).

Question: 11

A Data Engineer uses Airflow to orchestrate a nightly Spark ETL job. They define the schedule interval
using a specific timedelta object. If the start_date is set to datetime(2024, 1, 1, tz= ‘UTC'), which
definition ensures the DAG runs exactly once per day, processing the full calendar day's data?

A.

schedule interval=timedelta(hours=24)
B.

schedule interval=timedelta(days=0)
C.

schedule interval="8 @ '

D.

schedule interval=timedelta(days=1)
E. Both A and D are technically correct, assuming appropriate Python imports.

Answer: E

Explanation:

Airflow scheduling can be defined using cron expressions or timedelta objects. The requirement is to run once per day. A duration of

one day can be accurately represented in Python as either 24 hours or 1 day using the timedelta object. Option A (timedelta (hours=24)) specifies
a duration of 24 hours. Option D (timedelta(days=1)) specifies a duration of 1 day. Since 24 hours equals 1 day, both A and D achieve the exact
same daily scheduling frequency, provided the timedelta class is correctly imported (e.q., from datetime import timedelta). Option C achieves the
same goal but uses cron syntax, which is not the primary focus of the question (which highlights the equivalence of timedelta definitions). Thus, E is
the correct summary answer.

Question: 12

Visit usat: https.//www.examsboost.com/test/cdp-3002



A Data Engineer is migrating scheduling configurations from a legacy system to Airflow 2.x within a CDE
environment. The goal is to set the DAG schedule parameter (or schedule_interval in older syntax or
contexts) to define the frequency of execution. Which of the following data types or values are

syntactically valid for defining the scheduling interval in the DAG object definition in Python? (Select all
that apply)

A. A standard cron string, such as '0 1 5' (Friday at 1 AM).

B. A Python datetime. timedelta object, representing a specific time duration.
C. The Python string value 'None', to specify manual trigger only.

D. Airflow preset strings, such as '@daily'.

E. An integer representing the interval in seconds.

Answer: A,B,D

Explanation:
The schedule_interval (Or modern schedule parameter) parameter in an Airflow DAG definition accepts several types of values to
define the frequency: Option A: Standard cron expressions are a primary method for defining scheduling intervals. Option B: A datetime.timedelts

object is explicitly supported and commonly used to define schedules based on time duration. Option C: The Python literal 1ione (not the string
'None') is used to define a DAG that runs only manually. The string 'None’ is not a valid scheduling value in this context. Option D: Airflow supports
several preset strings (macros) that map to standard cron schedules, such as @ v, @hourly, etc.. Option E: While timede1ta uses time units, the
raw integer seconds value is not a supported type for the =chedule parameter, which expects a cron string, t+imede1t= object, or preset string.

Visit usat: https.//www.examsboost.com/test/cdp-3002



Thank You for Trying Our Product

For More Information - Visit link below:
https://www.examsboost.com/

15 USD Discount Coupon Code:
G74JA8UF

FEATURES

90 Days Free Updates

Money Back Pass Guarantee

Instant Download or Email Attachment
24/7 Live Chat Support

PDF file could be used at any Platform

XN N N X X

50,000 Happy Customer

N BAC
S5 Se

SATISEACTION GUARANTEE

S
- -~

Vist usat: https.//www.examsboost.com/test/cdp-3002


https://www.examsboost.com/�

