Boost up Your Certification Score

Databricks

_ertified-Associate-Devel oper -for-Apa
Certified Associate Developer for Apache Spark 3.5 - Python
Exam

O

Exams Boost
For More Information = Visit link below:
https://www.examsboost.com/

Product Version

v Up to Date products, reliable and verified.
v Questions and Answers in PDF Format.

https://www.examsboost.com/�

Latest Version: 7.1

A data scientist of an e-commerce company is working with user data obtained from its subscriber
database and has stored the data in a DataFrame df_user. Before further processing the data, the data
scientist wants to create another DataFrame df user_non_pii and store only the non-PIl columns in this
DataFrame. The Pll columns in df _user are first_name, last_name, email, and birthdate.

Which code snippet can be used to meet this requirement?

A. df _user_non_pii = df _user.drop("first_name", "last_name", "email", "birthdate")
B. df_user_non_pii = df_user.drop("first_name", "last_name", "email", "birthdate")
C. df_user_non_pii = df_user.dropfields("first_name", "last_name", "email", "birthdate")
D. df _user_non_pii = df_user.dropfields("first_name, last_name, email, birthdate")

Answer: A

Explanation:

To remove specific columns from a PySpark DataFrame, the drop() method is used. This method returns
a new DataFrame without the specified columns. The correct syntax for dropping multiple columns is to
pass each column name as a separate argument to the drop() method.

Correct Usage:

df _user_non_pii = df _user.drop("first_name", "last_name", "email", "birthdate")

This line of code will return a new DataFrame df_user_non_pii that excludes the specified PIl columns.
Explanation of Options:

A . Correct. Uses the drop() method with multiple column names passed as separate arguments, which is
the standard and correct usage in PySpark.

B . Although it appears similar to Option A, if the column names are not enclosed in quotes or if there's a
syntax error (e.g., missing quotes or incorrect variable names), it would result in an error. However, as
written, it's identical to Option A and thus also correct.

C. Incorrect. The dropfields() method is not a method of the DataFrame class in PySpark. It's used with
StructType columns to drop fields from nested structures, not top-level DataFrame columns.

D . Incorrect. Passing a single string with comma-separated column names to dropfields() is not valid
syntax in PySpark.

Reference:

PySpark Documentation: DataFrame.drop

Stack Overflow Discussion: How to delete columns in PySpark DataFrame

A data engineer is working on a Streaming DataFrame streaming_df with the given streaming data:

Vist us at: https.//www.examsboost.com/test/databricks-certified-associate-devel oper -for -apache-spark-3-5

Id| Name count timestamp

1| Delhi 20 [2024-09-19T10:10:10.000+00:00
1| Delni 50 [2024-09-19T10:10:50.000+00:00
1| Delni 10 |2024-09-19T10:11:10.000+00:00
2| London | 50 [2024-09-19T10:10:20 000+00:00
3| Paris 30 [2024-09-19T10:10:30.000+00:00
3| Paris 20 [2024-09-19T10:11:20.000+00:00
4 Washington| 10 [2024-09-19T10:10:40.000+00:00
4 \Washington| 40 [2024-09-19T10:11:00.000+00:00

Which operation is supported with streamingdf ?

A. streaming_df. select (countDistinct ("Name"))
B. streaming_df.groupby("ld") .count ()

C. streaming_df.orderBy("timestamp").limit(4)
D. streaming_df.filter (col("count") < 30).show()

Answer: D

Explanation:

In Structured Streaming, only a limited subset of operations is supported due to the nature of
unbounded data. Operations like sorting (orderBy) and global aggregation (countDistinct) require a full
view of the dataset, which is not possible with streaming data unless specific watermarks or windows
are defined.

Review of Each Option:

A . select(countDistinct("Name"))

Not allowed — Global aggregation like countDistinct() requires the full dataset and is not supported
directly in streaming without watermark and windowing logic.

Reference: Databricks Structured Streaming Guide — Unsupported Operations.

B . groupby("Id").count()

Supported — Streaming aggregations over a key (like groupBy("Id")) are supported. Spark maintains
intermediate state for each key.

Reference: Databricks Docs - Aggregations in Structured Streaming
(https://docs.databricks.com/structured-streaming/aggregation.html)

C . orderBy("timestamp").limit(4)

Not allowed — Sorting and limiting require a full view of the stream (which is infinite), so this is
unsupported in streaming DataFrames.

Reference: Spark Structured Streaming — Unsupported Operations (ordering without
watermark/window

not allowed).

D . filter(col("count") < 30).show()

Not allowed — show() is a blocking operation used for debugging batch DataFrames; it's not allowed on
streaming DataFrames.

Vist us at: https.//www.examsboost.com/test/databricks-certified-associate-devel oper -for -apache-spark-3-5

Reference: Structured Streaming Programming Guide — Output operations like show() are not
supported.

Reference Extract from Official Guide:

“Operations like orderBy, limit, show, and countDistinct are not supported in Structured Streaming
because they require the full dataset to compute a result. Use groupBy(...).agg(...) instead for
incremental aggregations.”

— Databricks Structured Streaming Programming Guide

An MLOps engineer is building a Pandas UDF that applies a language model that translates English
strings into Spanish. The initial code is loading the model on every call to the UDF, which is hurting the
performance of the data pipeline.

The initial code is:

def in_spanish_inner(df: pd.Series) -> pd.Series:

model = get_translation_model(target_lang="es')

return df.apply(model)

in_spanish = sf.pandas_udf(in_spanish_inner, StringType())

How can the MLOps engineer change this code to reduce how many times the language model is
loaded?

A. Convert the Pandas UDF to a PySpark UDF

B. Convert the Pandas UDF from a Series - Series UDF to a Series = Scalar UDF

C. Run the in_spanish_inner() function in a mapInPandas() function call

D. Convert the Pandas UDF from a Series = Series UDF to an Iterator[Series] = Iterator[Series] UDF

Answer: D

Explanation:

The provided code defines a Pandas UDF of type Series-to-Series, where a new instance of the language
model is created on each call, which happens per batch. This is inefficient and results in significant
overhead due to repeated model initialization.

To reduce the frequency of model loading, the engineer should convert the UDF to an iterator-based
Pandas UDF (lterator[pd.Series] -> Iterator[pd.Series]). This allows the model to be loaded once per
executor and reused across multiple batches, rather than once per call.

From the official Databricks documentation:

“Iterator of Series to Iterator of Series UDFs are useful when the UDF initialization is expensive... For
example, loading a ML model once per executor rather than once per row/batch.”

Vist us at: https.//www.examsboost.com/test/databricks-certified-associate-devel oper -for -apache-spark-3-5

— Databricks Official Docs: Pandas UDFs

Correct implementation looks like:

Python CopyEdit

@pandas_udf("string")

def translate_udf(batch_iter: Iterator[pd.Series]) -> Iterator[pd.Series]:

model = get_translation_model(target_lang='es')

for batch in batch_iter:

yield batch.apply(model)

This refactor ensures the get_translation_model() is invoked once per executor process, not per batch,
significantly improving pipeline performance.

A Spark DataFrame df is cached using the MEMORY_AND_DISK storage level, but the DataFrame is too
large to fit entirely in memory.
What is the likely behavior when Spark runs out of memory to store the DataFrame?

A. Spark duplicates the DataFrame in both memory and disk. If it doesn't fit in memory, the DataFrame
is stored and retrieved from the disk entirely.

B. Spark splits the DataFrame evenly between memory and disk, ensuring balanced storage utilization.
C. Spark will store as much data as possible in memory and spill the rest to disk when memory is full,
continuing processing with performance overhead.

D. Spark stores the frequently accessed rows in memory and less frequently accessed rows on disk,
utilizing both resources to offer balanced performance.

Answer: C

Explanation:

When using the MEMORY_AND_DISK storage level, Spark attempts to cache as much of the DataFrame
in memory as possible. If the DataFrame does not fit entirely in memory, Spark will store the remaining
partitions on disk. This allows processing to continue, albeit with a performance overhead due to disk
1/0.

As per the Spark documentation:

"MEMORY_AND_DISK: It stores partitions that do not fit in memory on disk and keeps the rest in
memory. This can be useful when working with datasets that are larger than the available memory."

— Perficient Blogs: Spark - StoragelLevel

This behavior ensures that Spark can handle datasets larger than the available memory by spilling excess
data to disk, thus preventing job failures due to memory constraints.

A data engineer is building a Structured Streaming pipeline and wants the pipeline to recover from
failures or intentional shutdowns by continuing where the pipeline left off.
How can this be achieved?

Vist us at: https.//www.examsboost.com/test/databricks-certified-associate-devel oper -for -apache-spark-3-5

A. By configuring the option checkpointLocation during readStream

B. By configuring the option recoverylLocation during the SparkSession initialization
C. By configuring the option recoverylLocation during writeStream

D. By configuring the option checkpointLocation during writeStream

Answer: D

Explanation:
To enable a Structured Streaming query to recover from failures or intentional shutdowns, it is essential

to specify the checkpointLocation option during the writeStream operation. This checkpoint location
stores the progress information of the streaming query, allowing it to resume from where it left off.
According to the Databricks documentation:

"You must specify the checkpointLocation option before you run a streaming query, as in the following
example:

.option("checkpointLocation", "/path/to/checkpoint/dir")

.toTable("catalog.schema.table")

— Databricks Documentation: Structured Streaming checkpoints

By setting the checkpointLocation during writeStream, Spark can maintain state information and ensure
exactly-once processing semantics, which are crucial for reliable streaming applications.

Vist us at: https.//www.examsboost.com/test/databricks-certified-associate-devel oper -for -apache-spark-3-5

Thank You for Trying Our Product

For More Information - Visit link below:
https://www.examsboost.com/

15 USD Discount Coupon Code:
G74JA8UF

FEATURES

90 Days Free Updates

Money Back Pass Guarantee

Instant Download or Email Attachment
24/7 Live Chat Support

PDF file could be used at any Platform

v
v
v
v
v
v

N BAC
S5 Se

50,000 Happy Customer

SATISEACTION GUARANTEE

S
- -~

Visit us at: https.//www.examsboost.com/test/databricks-certified-associate-devel oper -for -apache-spark-3-5

https://www.examsboost.com/�

